Home
Class 11
MATHS
int0^1(x dx)/(sqrt(x+lambda)+sqrt(x+mu))...

`int_0^1(x dx)/(sqrt(x+lambda)+sqrt(x+mu)),lambda!=mu`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_ (0) ^ (1) (xdx) / (sqrt (x + lambda) + sqrt (x + mu)), lambda! = mu

Find int_0^1dx/(sqrt(x+1)+sqrt(x))

Find int_0^1dx/(sqrt(x+1)+sqrt(x))

Find the locus of the point of intersection of the lines sqrt(3x)-y-4sqrt(3 lambda)=0 and sqrt(3)lambda x+lambda y-4sqrt(3)=0 for different values of lambda.

If int_(0)^(a)f(2a-x)dx=muandint_(0)^(a)f(x)dx=lambda , then int_(0)^(2a)f(x)dx equals a) 2lambda-mu b) lambda+mu c) mu-lambda d) lambda-2mu

int\ sin(101x)sin^99x dx = (sin(100x)(sin x)^lambda)/mu then lambda/mu

The length of the tangent drawn from any point on the circle x^2 + y^2 + 2gx + 2fy + lambda = 0 to the circle x^2 + y^2 + 2gx + 2fy + mu=0 is : (A) sqrt(mu-lambda) (B) sqrt(lambda-mu) (C) sqrt(mu+lambda) (D) none of these

If two lines L, in space,are definedby L_(1)={x=lambda y+(sqrt(lambda)-1},z=(sqrt(lambda)-1)y+sqrt(lambda)} and L_(2)={x=sqrt(mu)y+(1-sqrt(mu)),z=(1-sqrt(mu))y+ then L_(1) is perpendicular to L_(2) for all non-negative reals lambda and mu, such that:

The distance from the line x=2+t,y=1+t,z= -(1)/(2)-(1)/(2)t to the plane x+2y+6z=10 is (lambda)/(sqrt(mu)) . Then 5lambda-mu=