Home
Class 12
MATHS
if x=1^1/1+2^2/3+...1001^2/2001, y=1^1/3...

if `x=1^1/1+2^2/3+...1001^2/2001, y=1^1/3+2^2/5+...1001^2/2003` then `([x-y])/10` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = (1 ^(2))/(1) =+ (2 ^(2))/( 3) + (3 ^(2))/( 5) +.....+ (1001 ^(2))/( 2001) , y = (1^(2))/(3) + (2 ^(2))/( 5) + (3 ^(2))/(7) + .....+ (1001 ^(2))/(2003), then ([x -y])/(10) is equal to where [.] denotes greatest integer function)

Let a=(1^(2))/(1)+(2^(2))/(3)+(3^(2))/(5)+...+((1001)^(2))/(2001),b=(1^(2))/(3)+(2^(2))/(5)+(3^(2))/(7)+...+((1001)^(2))/(2003)

Let a=(1^(2))/(1)+(2^(2))/(3)+(3^(2))/(5)+....+((1001)^(2))/(2001),b=(1^(2))/(3)+(2^(2))/(5)+(3^(2))/(7)+....+((1001)^(2))/(2003) The closest of a-b is

IF x^3-2x^2y^2+5x+y-5=0 and y(1)=1, then -

If f(x)=x^3-x^2+100x+2002 ,t h e n f(1000)>f(1001) f(1/(2000))>f(1/(2001)) f(x-1)>f(x-2) f(2x-3)>f(2x)

If f(x)=x^3-x^2+100x+2002 ,t h e n f(1000)>f(1001) f(1/(2000))>f(1/(2001)) f(x-1)>f(x-2) f(2x-3)>f(2x)

If 1^2+2^2+3^2+....+2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2001)+....+(2003)(1) = (2003)(334)(x), then x equals