Home
Class 12
MATHS
If x=(1+logt)/(t^2),y=(3+2logt)/t ,"f i...

If `x=(1+logt)/(t^2),y=(3+2logt)/t ,"f i n d"(dy)/(dx)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .

If sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot

If x=(1+logt)/t^(2),y=(3+2logt)/t,tgt0 , prove that : dy/dx=t

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If x=(1+logt)/t^(2),y=(3+2logt)/t,tgt0 , prove that : ydy/dx-2x(dy/dx)^(2)=1 .

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t), then x((dy)/(dx))^(3)-(dy)/(dx) is equal to a.0 b.-1 c.1 d.2

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t), then x((dy)/(dx))^(3)-(dy)/(dx) is equal to (a)0(b)-1(c)1(d)

If x = (1+logt)/t^2, y = (3+2logt)/t, t > 0 , prove that y(dy/dx) - 2x(dy/dx)^2 = 1