Home
Class 12
MATHS
If a^2+b^2=23ab, then prove that: log (a...

If `a^2+b^2=23ab,` then prove that: `log (a+b)/5 = 1/2 (loga+log b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)=23ab , then prove that log(a+b)/5=1/2(loga+logb)

If a^2+b^2=23ab ,then prove that log((a+b)/5)=1/2(log a+log b)

If a^2+b^2=23 a b , then prove that log((a+b))/5=1/2(loga+logb)dot

If a^(2)+b^(2)=23ab, then prove that: (log(a+b))/(5)=(1)/(2)(log a+log b)

If a^2+b^2=18ab ,then prove that log((a-b)/4)=1/2(loga+logb)

If a^2+b^2 =7ab, then prove that "log"((a+b)/3)=1/2("log"a+"log"b)

If a^(2)+b^(2)=23ab, then prove that (log((a+b)))/(5)=(1)/(2)(log a+log b)

If a^(2)+b^(2)=23ab prove that log""(a+b)/5=1/2(loga+logb)

If a^(2) + b^(2) = 23ab , show that : "log" (a+b)/(5) = (1)/(2) (log a + log b) .

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .