Home
Class 12
MATHS
if the lines (x - 1)/(-3) = ( y - 2)/(2k...

if the lines `(x - 1)/(-3) = ( y - 2)/(2k) = ( z -3)/(2)` and `(x -1) /(3k) = ( y - 5)/(1) = (z - 6 ) /(-5)` are at night angle , then find the value of k .

Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines (x -1)/(-3) = (x - 2)/(2k) = (z - 3)/(2) and (x - 1)/(3k ) = (y -1)/(1) = (z - 6)/(-5) are perpendicular to each other, then the value of k is ,

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/(1)=(z-6)/(-5) are at right angle,then find the value of k

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)a n d(x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angel, then find the value of kdot

If the line (x-1)/(-3) = (y-2)/(2k) = (z-3)/( 2) and (x-1)/( 3k) = (y-5)/(1) = (6-z)/(5) are mutually perpendicular, then k is equal to

If the lines (x-1)/-3 = (y-2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z-6)/-5 are perpendicular, then find the value of k.

If the lines (x + 3)/(-3) = (y -1)/(k) = (z - 5)/(5) and (x +1)/(-1) = (y -2)/(2) = (z -5)/(5) are coplanar, then the value of k is