Home
Class 12
MATHS
int0^(1) x (1 - x ) ^(n) dx...

`int_0^(1) x (1 - x ) ^(n) dx `

Promotional Banner

Similar Questions

Explore conceptually related problems

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

The value of int_(0)^(1)x(1-x)^(n)backslash dx

If I(mn)=int_(0)^(1)x^(m)(1-x)^(n)dx,(m, n epsilon I, m,n ge 0 ) , then

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx