Home
Class 12
CHEMISTRY
Aluminium(a.w=27) crystalises in a cubic...

Aluminium(a.w=27) crystalises in a cubic unit cell with edge length (a)=100pm, with density 'd'=180g/cm, then type of unit cell is

A

SCC

B

BCC

C

FCC

D

HCP

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of unit cell for Aluminium (Al) given its edge length and density, we can follow these steps: ### Step 1: Understand the Formula for Density The density (\(d\)) of a crystalline solid can be expressed using the formula: \[ d = \frac{Z \cdot M}{N_a \cdot a^3} \] where: - \(Z\) = number of atoms per unit cell - \(M\) = molar mass of the substance (in grams per mole) - \(N_a\) = Avogadro's number (\(6.022 \times 10^{23} \, \text{mol}^{-1}\)) - \(a\) = edge length of the unit cell (in cm) ### Step 2: Convert Given Values 1. **Convert edge length from pm to cm**: \[ a = 100 \, \text{pm} = 100 \times 10^{-12} \, \text{m} = 100 \times 10^{-10} \, \text{cm} = 1 \times 10^{-8} \, \text{cm} \] 2. **Use the molar mass of Aluminium**: \[ M = 27 \, \text{g/mol} \] 3. **Density is given**: \[ d = 180 \, \text{g/cm}^3 \] ### Step 3: Substitute Values into the Density Formula Substituting the known values into the density formula: \[ 180 = \frac{Z \cdot 27}{6.022 \times 10^{23} \cdot (1 \times 10^{-8})^3} \] ### Step 4: Calculate \(a^3\) Calculate \(a^3\): \[ a^3 = (1 \times 10^{-8})^3 = 1 \times 10^{-24} \, \text{cm}^3 \] ### Step 5: Rearrange the Density Equation to Solve for \(Z\) Rearranging the equation gives: \[ Z = \frac{180 \cdot 6.022 \times 10^{23} \cdot 1 \times 10^{-24}}{27} \] ### Step 6: Calculate \(Z\) Now, calculate \(Z\): 1. Calculate the numerator: \[ 180 \cdot 6.022 \times 10^{23} \cdot 1 \times 10^{-24} = 10.8436 \, \text{(approximately)} \] 2. Now divide by \(27\): \[ Z = \frac{10.8436}{27} \approx 4 \] ### Step 7: Identify the Type of Unit Cell From the calculated value of \(Z\): - \(Z = 4\) corresponds to a Face-Centered Cubic (FCC) unit cell. ### Conclusion The type of unit cell for Aluminium is **Face-Centered Cubic (FCC)**. ---
Promotional Banner

Topper's Solved these Questions

  • SOLID STATES

    NARAYNA|Exercise EVALUATE YOURSELF - III|5 Videos
  • SOLID STATES

    NARAYNA|Exercise CUQ (INTRODUCTION)|2 Videos
  • SOLID STATES

    NARAYNA|Exercise EVALUATE YOURSELF - I|6 Videos
  • QUALITATIVE ANALYSIS

    NARAYNA|Exercise Subjective Type Question|33 Videos
  • SOLUTIONS & COLLIGATIVE PROPERTIES

    NARAYNA|Exercise EXERCISE : 4|26 Videos

Similar Questions

Explore conceptually related problems

Al (atomic mass =27) crystallises in a cubic system with edge length (a) equal to 4Å its density is 2.7 g//cm^(3) The type of the unit cell is:

In face centred cubic unit cell edge length is

In face centred cubic unit cell edge length is

Al crystallises in cubic shape unit cell and with edge length 405pm and density 2.7g/cc. Predict the type of crystal lattice.

In a face- centred cubic unit cell, the edge length is

In face -centered cubic unit cell, edge length is