Home
Class 11
MATHS
The least value of 2^(sinx)+2^(cosx), is...

The least value of `2^(sinx)+2^(cosx)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

find least value of 2^sinx +2^cosx

The minimum value of 2^(sinx)+2^(cosx) is -

Minimum value of 2^(sinx)+2^(cosx) is

If sinx-cosx=1 , where 'x' is an acute angle ,the value of (sinx+cosx) is :

The minimum value of 2^sinx+2^cosx

If sinx-cosx=1,where'x'is an acute angle,the value of (sinx+cosx) is:

If sinx + cosx = a, then the value of| sinx - cosx| is

If tanx =3/2 , then the value of (3sinx+2cosx)/(3sinx-2cosx) is: यदि tanx =3/2 , (3sinx+2cosx)/(3sinx-2cosx) का मान है:

The value of 3(sinx - cosx)^4 + 6(sinx + cosx)^2 + 4 (sin^6 x + cos^6 x) is

The value of int(dx)/(sinx-cosx+sqrt(2)) is -