Home
Class 11
MATHS
If a,b,c,d be in G.P. show that (b-c)^2+...

If a,b,c,d be in G.P. show that `(b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d are in G.P then show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2 .

If a, b, c and d are in G.P., show that, (b-c)^(2) + (c-a)^(2)+ (d-b)^(2) = (a-d)^(2) .

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2

If a, b, c ,d be in G.P. , show that (i) (b -c)^(2) + (c - a)^(2) +(d -b)^(2) = (a - d)^(2) (ii) a^(2) + b^(2) + c^(2) , ab + bc + cd , b^(2) + c^(2) + d^(2) are in G.P.

If a, b, c, d are in GP, prove that (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2) .

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If a,b,c,d be in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(ab+bc+cd)^2

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.