Home
Class 11
MATHS
The value of 2^("log"(3)7) - 7^("log"(3)...

The value of `2^("log"_(3)7) - 7^("log"_(3)2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

Let x,y and z be positive real numbers such that x^(log_(2)7)=8,y^(log_(3)5)=81 and z^(log_(5)216)=(5)^((1)/(3)) The value of (x(log_(2)7)^(2))+(y^(log_(3)5)^^2)+z^((log_(5)16)^(2)), is

if a,b,c are positive real numbers such that a^(log_(3)7)=27;b^(log711)=49 and c^(log_(11)25)=sqrt(11) then the value of {a^(log_(3)7)sim2+b^(log_(7)11)^^2+c^(log_(11)25)^^2} is

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

The value of (((log)_(2)9)^(2))^((log)_(2)((log)2^(9)))xx(sqrt(7))^((1)/((log)_(4)7)) is

The value of (3log_(2)((81)/(80))+5log_(2)((25)/(24))+7log_(2)((16)/(15))) is