Home
Class 11
MATHS
Properties of a complex no. If z;z1;z2 a...

Properties of a complex no. If `z;z_1;z_2` are complex no.; then (vii)`bar(z_1+z_2)=barz_2+barz_1` (viii)`bar(z_1-z_2)=barz_1-barz_2` (ix)`bar(z_1z_2)=barz_1barz_2` (x) `(barz_1)/z_2=barz_1/barz_2` where `z_2!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is (are) correct? (A) bar(z_1-z_2)-a(barz_1-barz_2)=0 (B) bar(z_1-z_2)+a(barz_1-barz_2)=0 (C) bar(z_1-z_2)+a(barz_1-barz_2)=-b (D) bar(z_1-z_2)+a(barz_1-barz_2)=-b

Which of the following is (are) correct? (A) bar(z_1-z_2)-a(barz_1-barz_2)=0 (B) bar(z_1-z_2)+a(barz_1-barz_2)=0 (C) bar(z_1-z_2)+a(barz_1-barz_2)=-b (D) bar(z_1-z_2)+a(barz_1-barz_2)=-b

If z_1 , and z_2 be two complex numbers prove that bar(z_1+-z_2)=barz_1+-barz_2

If z is a nonzero complex number then (bar(z^-1))=(barz)^-1 .

If z_1,z_2,z_3 are three complex number then prove that z_1Im(barz_2.z_3)+z_2Im(barz_3.z_1)+z_3Im(barz_1.z_2)=0

(1) Re((z1z2)/(barz1))

Let z_1 and z_2 are two complex nos s.t. abs(z_1) =abs(z_2)=1 then abs((z_1-z_2)/(1-z_1 barz_2)) is equal to

If z_(1),z_(2) are tow complex numberes (z_(1) ne z_(2)) satisfying |z_(1)^(2)- z_(2)^(2)|=|barz_(1)^(2)+barz_(2)^(2) - 2barz_(1)barz_(2)| , then

If z_(1),z_(2) are tow complex numberes (z_(1) ne z_(2)) satisfying |z_(1)^(2)- z_(2)^(2)|=|barz_(1)^(2)+barz_(2)^(2) - 2barz_(1)barz_(2)| , then

If z_(1)=3-4i , z_(2)=2+i find z_(1)barz_(1)+z_(2)barz_(2)