Home
Class 11
MATHS
If "log"(y) x = "log"(z)y = "log"(x)z, t...

If `"log"_(y) x = "log"_(z)y = "log"_(x)z`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(y)x=(a.log_(z)y)=(b.log_(x)z)=ab , then which of the following pairs of values for (a,b) is not possible?

If 1, log_(y) x, log_(z) y , - 15 log_(x) z are in A.P ., then

If 1, log_(y)x, log_(z)y,-15 log_(x)z are in A.P. then the correct statement is :

If x^(18)= y^(21) = z^(28) , then 3, 3log_(y)x, 3log_(z)y, 7 log_(x)z are in :

. If 1,log_(y)x,log_(z)y,-15log_(x)z are in AP,then (b) x=y-1 (d) All of these (a)2=x(c)2-3=y

If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =

If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.