Home
Class 11
MATHS
If 3^(2x+1)*4^(x-1)=36 then find the val...

If `3^(2x+1)*4^(x-1)=36` then find the value of x

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3x - (1)/(2x) = 3 , then find the value of (36x^(4) + 1)/(4x^(2)) .

if x^(3)-(1)/(x^(3))=36 then find the value of x-(1)/(x)

If 3^(x)+3^(x+1)=36 , then the value of x^(x) is :

If x^2-4x+3=1 then find the value of x.

If |(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x)|=3 then find the value of |(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0)|

If x - (1)/(2x) = 2 , then find the value of (4x^(4) + 1)/(4x^(2))

If x^(2) + (1)/(x^(2)) = 23 , then find the value of x + (1)/( x) and x^(3) + (1)/( x^(3))

If x = 1/(2-sqrt3) then find the value of (x^(3) -2x^2 - 7x +4)