Home
Class 11
MATHS
The equation "log"(e)x + "log"(e)(1+x) =...

The equation `"log"_(e)x + "log"_(e)(1+x) =0` can be written as

Promotional Banner

Similar Questions

Explore conceptually related problems

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

Solve log_(e)(x-a)+log_(e)x=1.(a>0)

Solve : log_e (x-a) + log_e x =1 (a>0)

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is

The integrating factor of the differential equation (dy)/(dx)(x(log)_(e)x)+y=2(log)_(e)x is given by