Home
Class 9
MATHS
Let f(x)=1+x^2 and g be a functon such ...

Let `f(x)=1+x^2` and g be a functon such that `f(g(x))=1+x^2-2x^3+x^4` . The value of `g(18)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

Let f(x)=1+x^(2) and f(g(x))=1+x^(2)-2x^(3)+x^(4). A possible value of g(3) is

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (f+g)(x)

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (f-g)(x)

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

If the function f(x) = x^3 + e^(x/2) and g(x) =f^-1(x) , then the value of g'(1) is

Let f(x)=x^2 and g(x)=2x+1 be two real valued functions,Find (i) (f+g)(x)

Let f(x)=x^(2)-ax+3a-4 and g(a) be the least value of f(x) then the greatest value of g(a)

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is: