Home
Class 11
MATHS
Prove that: sin^2 42^0-cos^2 78^0=(sqrt(...

Prove that: `sin^2 42^0-cos^2 78^0=(sqrt(5)+1)/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Prove that sin^2 48^@ - cos^2 12^@ = - (sqrt(5) +1)/8

Given that sin18^@=(sqrt5-1)/4 prove that sin^2 24^@-sin^2 6^@=(sqrt5-1)/8

Prove that: cos^2 45^0-sin^2 15^0=(sqrt(3))/4

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)