Home
Class 11
MATHS
Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x)...

Let `f(x)=x, g(x)=1//x and h(x)=f(x) g(x).` Then, h(x)=1, if

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x,g(x)=1/x and h(x)=f(x)g(x) . Then h(x)=1 for a. x in R b. x in Q c. x in R-Q d. x in R , x!=0

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=f(g(x)) t h e n f i n d (h^(prime)(x))/(h(x))

If f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x) , then f(g(h(x))) is :

let f(x)=e^(x),g(x)=sin^(-1)x and h(x)=f(g(x)) th e n fin d (h'(x))/(h(x))

Let f(x)=sinx,g(x)=x^2 and h(x) = log x. If F(x)=(h(f(g(x)))) , then F'(x) is:

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following If the solution of F(x) -G (x) =0 are x_1,x_2, x_3 --------- x_n Where x in [0,5 pi] then