Home
Class 9
MATHS
If the mean of n observation a x1, a x2...

If the mean of `n` observation `a x_1, a x_2, a x_3, ,a x_n` is `a barX` , show that `(a x_1-a barX )+(a x_2-a barX )++(a x_n-a barX)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the mean of observations x_i, x_2,……., x_n is barx , then the mean of (x_1 + a), (x_2 + a), ….., (x_n + a) is____

If the mean of observations x_1.x_2,x_3…..x_n is barx then the mean of x_1+a,x_2+a,…...x_n+a will be

If the mean of n observations x_1,x_2,x_3...x_n is barx then the sum of deviations of observations from mean is

If barx represents the mean of n observations x_1, x_2,…….,x_n , then value of sum_(i=1)^n (x_1-barx) is :

If the mean of the set of numbers x_1,x_2, x_3, ..., x_n is barx, then the mean of the numbers x_i+2i, 1 lt= i lt= n is

If the mean of the set of numbers x_1,x_2, x_3, ..., x_n is barx, then the mean of the numbers x_i+2i, 1 lt= i lt= n is

If the mean of the set of numbers x_1,x_2, x_3, ..., x_n is barx, then the mean of the numbers x_i+2i, 1 lt= i lt= n is

x_1,x_2,x_3,….x_n then (x_1-barx)+(x_2-barx)+(x_n-barx)=0.

If the arithmetic mean of the numbers x_1 , x_2, x_3,……., x_n is barx , then the arithmetic mean of the numbers ax_1 + b, ax_2 + b, ax_3 + b, ……, ax_n + b , where a and b are two constants, would be: