Home
Class 11
MATHS
lim(x->0)((a1^x+a2^x......+an^x)/(n))^(1...

`lim_(x->0)((a_1^x+a_2^x......+a_n^x)/(n))^(1/x)` =

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xvecoo)((a_1^( 1/x)+a_2^ (1/x)+ --+a_ n^(1/x))/n)^(n x)

Evaluate: ("lim")_(xvecoo)((a_1^( 1/x)+a_2^ (1/x)+ --+a_ n^(1/x))/n)^(n x)

Evaluate: ("lim")_(nvecoo)((a1 1/x+a2 1/x++a n1/x)/n)^(n x)

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

Let a_1,a_2,.....,a_n be fixed real numbers and define a function f(x) = (x-a_1) (x-a_2).....(x-a_n) . What is (lim)_(x->a_1)f(x) ? For some a!=a_1,a_2,.....,a_n , compute (lim)_(x->a)f(x)

Given that (1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n) find i) a_0 + a_1 +a_2 .. . . .+ a_(2n) ii) a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) iii) (a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2

Given that (1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n) find i) a_0 + a_1 +a_2 .. . . .+ a_(2n) ii) a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) iii) (a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2

1 + (x)/( a_1) + ( x( x+a_1) )/( a_1 a_2 ) + .... + ( x ( x+a_1) (x+ a_2)... ( x+a_(n-1) ) )/( a_1 a_2 ..... a_n)=

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n