Home
Class 12
MATHS
The value of integral int (1//pi)^(2//p...

The value of integral ` int _(1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integrals : I = int_(1//pi)^(2//pi) (sin""(1)/(x))/(x^(2)) dx ,

The value of integral int _(0)^(pi) x f (sin x ) dx is

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

The value of the integral - int_(1/4)^(3/4)((pi)/(2)+sin^(-1)x)/(2cos^(-1)x+3sin^(-1)x+sin^(-1)(1-x)) dx is -

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

If f(x)=x+sin x and I denotes the value of integral int_(pi)^(2 pi)((f^(-1))(x)+sin x)dx then the value of [(2I)/(3)]( where [-] denotes greatest integer function)

The value of the integral int_(0)^(pi) | sin 2x| dx is