Home
Class 11
MATHS
prove that 2+4+6+…2n=n^(2)+n, for all na...

prove that `2+4+6+…2n=n^(2)+n`, for all natural numbers n.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2n +1 lt 2^(n) for all natural numbers n ge3

Prove each of the statements by the principle of mathematical induction : 2 + 4+ 6 + …+ 2n = n^2 + n for all natural numbers n .

prove that n^(2)lt2^(n) , for all natural number n≥5 .

prove that n^(2)lt2^(n) , for all natural number n≥5 .

prove that 2nlt(n+2)! for all natural numbers n.

prove that 2nlt(n+2)! for all natural numbers n.

prove that 1+5+9+ . . .+(4n-3)=n(2n-1), for all natural number n.

prove that 1+5+9+ . . .+(4n-3)=n(2n-1), for all natural number n.

Prove that 1+2+2^(2)+ . . .+2^(n)=2^(n+1)-1 , for all natural number n.

Prove that 1+2+2^(2)+ . . .+2^(n)=2^(n+1)-1 , for all natural number n.