Home
Class 12
MATHS
If cos(theta-alpha)=p and sin(theta+be...

If `cos(theta-alpha)=p and sin(theta+beta)=q` show that `p^2+q^2-2p qsin(alpha+beta)=cos^2(alpha+beta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(theta-alpha)=p and sin(theta+beta)=q show that p^(2)+q^(2)-2pq sin(alpha+beta)=cos^(2)(alpha+beta)

If cos (theta - alpha) = p " and " sin(theta + beta) = q," show that " p^(2) +q^(2) - 2pq sin (alpha + beta) = cos^(2) (alpha + beta)

If cos(theta-alpha)=a,sin(theta-beta)=b, prove that a^(2)-2ab sin(alpha-beta)+b^(2)=cos^(2)(alpha-beta)

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(alpha-beta)+2ab cos(alpha-beta)

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If sin (theta + alpha) = a and sin (theta + beta) = b,"then" cos 2 (alpha - beta) - 4ab cos (alpha - beta) =

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to