Home
Class 11
MATHS
" 15."sin(tan^(-1)x),|x|<1" is equal to ...

" 15."sin(tan^(-1)x),|x|<1" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

tan(sin^(-1)x)

Number of solutions of tan(sin^(-1)x)+sin(tan^(-1)x)=x is equal to

sin(tan^-1x), |x|<1 is equal to :

sin(cot^(-1)(tan(tan^(-1)x))),x in(0,1]

sin(cot^(-1)(tan(tan^(-1)x))),"x" in (0," 1]

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

Value of sin{tan^(-1)x+tan^(-1)((1)/(x))}_( is )

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

lim_ (x rarr0) (sin (tan x) -tan (sin x)) / (tan ^ (- 1) (sin ^ (- 1) x) -sin ^ (- 1) (tan ^ (- 1) x )) =