Home
Class 12
MATHS
[" 3) equals "1/sqrt(2)" ,"4" ) does not...

[" 3) equals "1/sqrt(2)" ,"4" ) does not exisf "],[" 12.Let "f:R rarr R" be a positive increasing funtion "],[qquad " with "lim(f(3x))/(f(x))=1" then "lim_(x rarr oo)(f(2x))/(f(x))=],[qquad [2010]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1 then lim_(x rarr oo)(f(2x))/(f(x))=

lim_(x rarr oo) (1+f(x))^(1/f(x))

Let f:R to R be a positive increasing function with lim_(x to oo) (f(3x))/(f(x))=1 . Then lim_(x to oo) (f(2x))/(f(x))=

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1. Then lim_(x rarr oo)(f(2x))/(f(x))=(1)(2)/(3)(2)(3)/(2)(3)3(4)1

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f: R to R be a positive increasing function with Lt_(x to oo)(f(3x))/(f(x))=1 then Lt_(x to oo)(f(2x))/(f(x))=