Home
Class 12
MATHS
[" 36.If "bar(a),bar(b),bar(c)" are non-...

[" 36.If "bar(a),bar(b),bar(c)" are non- coplanar vectors then "],[[bar(a)+2bar(b)bar(a)+bar(c)bar(b)]=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

Prove that the following four points are coplanar. i) 4bar(i)+5bar(j)+bar(k), -bar(j)-bar(k), 3bar(i)+9bar(j)+4bar(k), -4bar(i)+4bar(j)+4bar(k) ii) -bar(a)+4bar(b)-3bar(c), 3bar(a)+2bar(b)-5bar(c), -3bar(a)+8bar(b)-5bar(c), -3bar(a)+2bar(b)+bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors) iii) 6bar(a)+2bar(b)-bar(c), 2bar(a)-bar(b)+3bar(c), -bar(a)+2bar(b)-4bar(c), -12bar(a)-bar(b)-3bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors)

i) bar(a), bar(b), bar(c) are pairwise non zero and non collinear vectors. If bar(a)+bar(b) is collinear with bar(c) and bar(b)+bar(c) is collinear with bar(a) then find the vector bar(a)+bar(b)+bar(c) . ii) If bar(a)+bar(b)+bar(c)=alphabar(d), bar(b)+bar(c)+bar(d)=betabar(a) and bar(a), bar(b), bar(c) are non coplanar vectors, then show that bar(a)+bar(b)+bar(c)+bar(d)=bar(0) .

If [(bar(a)+2bar(b)+3bar(c))times(bar(b)+2bar(c)+3bar(a))].(bar(c)+2bar(a)+3bar(b))=54 , where bar(a),bar(b)&bar(c) are 3 non coplanar vectors then |[bar(a).bar(a)quad bar(a).bar(b)quad bar(a).bar(c)],[bar(b).bar(a)quad bar(b).bar(b)quad bar(b).bar(c)],[bar(c).bar(a)quad bar(c).bar(b)quad bar(c).bar(c)]|

If bar(a), bar(b), bar(c) are non coplanar, show that the vectors bar(a)+2bar(b)-bar(c), 2bar(a)-3bar(b)+2bar(c), 4bar(a)+bar(b)+3bar(c) are linearly independent.

If bar(a), bar(b), bar(c) are non coplanar then the vectors bar(a)-2bar(b)+3bar(c), -2bar(a)+3bar(b)-4bar(c), bar(a)-3bar(b)+5bar(c) are