Home
Class 11
MATHS
[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]=9...

[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]=9b^(2)(a+b)

Promotional Banner

Similar Questions

Explore conceptually related problems

a a+b a+2b 10. Using properties of determinants, show that |[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|=9b^2(a+b)

Using properties of determinant show that : |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9b^2(a+b)

Using properties of determinats show that |{:(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a):}|=9b^2(a+b)

The value of Delta = |(a,a +b,a +2b),(a +2b,a,a +b),(a +b,a +2b,a)| is equal to

Without expanding the determinants,show that |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

The determinant Delta=|(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=

The value of |{:(a,a+2b,a+4b),(a+2b,a+4b,a+6b),(a+4b,a+6b,a+8b):}| is