Home
Class 12
MATHS
If alpha and beta are distict roots of ...

If `alpha` and `beta` are distict roots of `acostheta+b sintheta=c ,` prove that `sin(alpha+beta)=(2a b)/(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are distinct roots of acostheta+b sintheta=c , prove that sin(alpha+beta)=(2a b)/(a^2+b^2)

If alpha and beta are distict roots of a cos theta+b sin theta=c, prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha and beta be two different roots of equation,a cos theta+b sin theta=c prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha and beta are the solutions of a cos theta+b sin theta=c , then prove that : cos (alpha- beta)= (2c^2- (a^2+b^2))/(a^2+b^2) .

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, cosalpha+cosbeta=(2ac)/(a^(2)+b^(2))andcosalpha.cosbeta=(c^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are distinct roots of the equation : a tan theta+b sec theta=c , prove that tan (alpha+ beta)= (2ac)/(a^2-c^2) .