Home
Class 10
MATHS
आकृति 6 . 53 में ABD एक समकोण त्रिभुज ह...

आकृति 6 . 53 में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा `AC bot BD` है । दर्शाइए कि
(i) `AB^(2) = BC gt BD`
(ii) `AC^(2) = BC . DC`
(iii) `AD^(2) = BD . CD`

Promotional Banner

Similar Questions

Explore conceptually related problems

ABD is a triangle right angled at A and AC bot BD Show that (i) AB^(2) = BC .BD. (ii) AC^(2) = BC.DC (iii) AD^(2) = BD .CD.

In Fig. ABD is a triangle right angled at A and AC bot BD show that (i) AB^(2) =BC . BD , (ii) AC^(2) = BC . DC , (iii) AD^(2) = BD . CD

In Fig., ABD is a triangle right angled at A and AC bot BD . Show that: (i) AB^(2) = BC.BD (ii) AC^(2) = BC.DC (iii) AD^(2) = BD.CD

In Delta ABCA=90^(@) and AC perp BD ,then Show that (a)AB^(2)=BC.BD(b)AC^(2)=BC.DC(c)AD^(2)=BD.CD

ABD is a Triangle right angle at A and AC bot BD . Show that (i) AB^2=BC.BD (ii) AD^2=BD.CD (iii) AC^2=BC.DC

ABD is a triangle right angled at A and ACbotBD .Showthat i) AB^2=BC*BD ii) AC^2=BC*DC iii) AD^2=BD*CD

In Delta ABC , AD bot BC and AD^(2)= BD xx CD . Prove that AB^(2) + AC^(2) = (BD + CD)^(2)

In the given fig. if AD bot BC Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2) .

In the given fig. if AD bot BC Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2) .

From the following figure, prove that : (i) AB gt BD (ii) AC gt CD (iii) AB+AC gt BC