Home
Class 12
MATHS
If Ai = (x-ai)/(|x-ai|), i = 1,2,3,........

If `A_i = (x-a_i)/(|x-a_i|), i = 1,2,3,.....n` and `a_1 lt a_2 lt a_3........a_n` , then `lim_(x->a_m)(A_1A_2A_3.......A_n)`, `1<= m <= n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_i>0,i=1,2,3,...n and (n-1)s=a_1+a_2+a_3+....+a_n , prove that a_1*a_2*a_3*....a_nge(n-1)^n*(s-a_1)(s-a_2)...(s-a_n) .

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If |a_i| < 1,lamda_i geq0 for i=1,2,3,...,n and lambda_1+lamda_2+...lambda_n=1 then the value of |lambda_1 a_1+lambda_2 a_2+......+lambda_n a_n| is

If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

If a_1+a_2+a_3+......+a_n=1 AA a_1 > 0, i=1,2,3,......,n, then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n.