Home
Class 11
MATHS
Line x/a+y/b=1 cuts the coordinate axes...

Line `x/a+y/b=1` cuts the coordinate axes at `A(a ,0)a n dB(0,b)` and the line `x/a^(prime)+y/b^(prime)=-1` at `A (-a ,)` and `B^(prime)(0,-b^(prime))dot` If the points `A ,B ,A^(prime),B '` are concyclic, then the orthocentre of triangle `A B A '` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Line x/a+y/b=1 cuts the coordinate axes at A(a,0) and B(0,0) and the line x/a+y/b= -1 at A'(-a',0) and B'(0,-b') . If the points A,B A' ,B' are concyclic , then the orthocentre of the triangle ABA' is

Line x/a+y/b=1 cuts the co-ordinate axes at A(a,0) and B(0,b) and the line x/(a')+y/(b')=-1 at A'(-a',0) and B'(0,-b') . If the points A,B,A',B' are concyclic then the orthocentre of triangle ABA' is

Line x/a+y/b=1 cuts the co-ordinate axes at A(a,0) and B(0,b) and the line x/a'+y/b'=-1 at A'(-a',0) and B'(0,-b') . If the points A,B,A',B' are concyclic then the orthocentre of triangle ABA' is

Line x/a+y/b=1 cuts the co-ordinate axes at A(a,0) and B(0,b) and the line x/a'+y/b'=-1 at A'(-a',0) and B'(0,-b') . If the points A,B,A',B' are concyclic then the orthocentre of triangle ABA' is

Line x/a+y/b=1 cuts the co-ordinate axes at A(a,0) and B(0,b) and the line x/a'+y/b'=-1 at A'(-a',0) and B'(0,-b'). If the points A,B,A',B' are concyclic then the orthocentre of triangle ABA' is

Using determinants prove that the points (a ,\ b),\ (a^(prime),\ b^(prime))a n d\ (a-a^(prime),\ b-b^(prime)) are collinear if a b^(prime)=a^(prime)bdot

Using determinants prove that the points (a ,\ b),\ (a^(prime),\ b^(prime))a n d\ (a-a^(prime),\ b-b^(prime)) are collinear if a b^(prime)=a^(prime)bdot

The line A x+B y+C=0 cuts the circle x^2+y^2+a x+b y+c=0 at Pa n dQ . The line A^(prime)x+B^(prime)x+C^(prime)=0 cuts the circle x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0 at Ra n dSdot If P ,Q ,R , and S are concyclic, then show that |a-a ' b-b ' c-c ' A B C A ' B ' C '|=0

The line A x+B y+C=0 cuts the circle x^2+y^2+a x+b y+c=0 at Pa n dQ . The line A^(prime)x+B^(prime)x+C^(prime)=0 cuts the circle x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0 at Ra n dSdot If P ,Q ,R , and S are concyclic, then show that |a-a ' b-b ' c-c ' A B C A ' B ' C '|=0

The line A x+B y+C=0 cuts the circle x^2+y^2+a x+b y+c=0 at Pa n dQ . The line A^(prime)x+B^(prime)x+C^(prime)=0 cuts the circle x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0 at Ra n dSdot If P ,Q ,R , and S are concyclic, then show that |a-a ' b-b ' c-c ' A B C A ' B ' C '|=0