Home
Class 11
MATHS
Prove that: cos^2 45^0-sin^2 15^0=(sqrt(...

Prove that: `cos^2 45^0-sin^2 15^0=(sqrt(3))/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^2 45^@-sin^2 15^@=sqrt3/4

Prove that: cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8

Prove that: cos^(2)45^(@)-sin^(2)15^(0)=(sqrt(3))/(4)

Prove that, cos^(2)45^(@)-sin^(2)15^(@)=sqrt(3)/(4)

Prove that: sin^2 42^0-cos^2 78^0=(sqrt(5)+1)/8

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Prove that: cos18^0-sin 18^0=sqrt(2)sin27^0

Prove that: cos18^0-sin 18^0=sqrt(2)sin27^0

Prove that: cos15^@-sin15^@=1/sqrt2

Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0