Home
Class 12
MATHS
If a(1),a(2),a(3),......,a(n) are in A.P...

If `a_(1),a_(2),a_(3),......,a_(n)` are in A.P. Where `a_(k)>0AA K` and `sum_(K=2)^(n)(1)/(sqrt(a_(K-1))+sqrt(a_(K)))=(L)/(sqrt(a_(1))+sqrt(a_(n)))` then `L=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),a_(n) are in A.P,where a_(i)>0 for all i, show that (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))++(1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(n-1)/(sqrt(a_(1))+sqrt(a_(n)))

If a_(1),a_(2),a_(3)... are in A.P then prove that (1)/(sqrt(a)_(1)+sqrt(a)_(2))(+)/(sqrt(a)_(2)+sqrt(a)_(3))+...+(1)/(sqrt(a)_(n-1)+sqrt(a)_(n))=(n-1)/(sqrt(a)_(n)+sqrt(a)_(1))

If a_(1),a_(2),...,a_(n) be an A.P. of positive terms, then

If a_(1),a_(2),a_(3)...a_(2n-1) are in H.P.then sum_(k=1)^(2n)(-1)^(k)(a_(k)+a_(k+1))/(a_(k)-a_(k+1)) is equal to

If a_(r)>0,r in N and a_(1)*a_(2),....a_(2n) are in A.P then (a_(1)+a_(2))/(sqrt(a)_(1)+sqrt(a)_(2))+(a_(2)+a_(2n-1))/(sqrt(a)_(2)+sqrt(a)_(3))+...+(a_(n)+a_(n+1))/(sqrt(a)_(n)+sqrt(a)_(n+1))=

If a_(1),a_(2),a_(3),dots,a_(n+1) are in A.P.then (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))...+(1)/(a_(n)a_(n+1)) is

a_(1),a_(2),a_(3),......,a_(n), are in A.P such that a_(1)+a_(3)+a_(5)=-12 and a_(1)a_(2)a_(3)=8 then