Home
Class 12
MATHS
If (1)/(a)*(1)/(b)*(1)/(c) are in A.P.th...

If `(1)/(a)*(1)/(b)*(1)/(c)` are in A.P.then `(1)/(a),(1)/(a-c),(1)/(a-b)` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(b+c),(1)/(c+a),(1)/(a+b) are in A.P.then

If (1)/(b+c),(1)/(c+a),(1)/(a+b) are in A.P., then

If (b+c)/(a),(c+a)/(b),(a+b)/(c) are in A.P. show that (1)/(a),(1)/(b)(1)/(c) are also in A.P.(a+b+c!=0)

If (b+c-a)/(a),(c+a-b)/(b),(a+b-c)/(c) are in A.P.show that (1)/(a),(1)/(b),(1)/(c) are in A.P.provided a+b+c!=0

If (1)/(a),(1)/(b),(1)/(c) are in A.P.prove that: (b+c)/(a),(c+a)/(b),(a+b)/(c) are in A.P.

If (b+c-a)/(a),(c+a-b)/(b),(a+b-c)/(c) are in A.P.Prove that (1)/(a),(1)/(b),(1)/(c) are in A.P.

If (b-c)^(2),(c-a)^(2),(a-b)^(2) are in A.P.then show that (1)/(b-c),(1)/(c-a),(1)/(a-b) are in A.P.

If (b+c-a)/(a),(b+c-a)/(b),(a+b-c)/(c), are in A.P.prove that (1)/(a),(1)/(b),(1)/(c) are also in A.P.