Home
Class 12
MATHS
If y in[-(pi)/(2), (pi)/(2)], sin y=x si...

If `y in[-(pi)/(2), (pi)/(2)], sin y=x sin(y+(pi)/(6))` such that the value of `(dy)/(dx)` at `x=1` is `a+(sqrt(b))/(c)` where `a,b,c in N` and `b` is a prime number.Then the value of `a*b*c` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(sin x) ,the value of (dy)/(dx) at x=(pi)/(2) is

The value of (dy)/(dx) at x=(pi)/(2) , where y is given by y=x^(sinx)+sqrt(x) , is

If y=tan^(-1)sqrt((1-sin x)/(1+sin x)), then the value of (dy)/(dx) at x=(pi)/(6) is.

If y= tan ^(-1) sqrt (( 1 - sin x)/( 1 + sin x)) , then the vluae of (dy)/(dx) at x = pi /2 is

If y=sin^(-1)(sin x),-(pi)/(2)<=x<=(pi)/(2). Then, write the value of (dy)/(dx) for x in(-(pi)/(2),(pi)/(2))

If y=e^( sinx ) the value of (dy)/(dx) at x=(pi)/(2) is , (a) 1 , (b) e , (c) 0 ,(d) not defined .

If y=log sqrt(tan x), then the value of (dy)/(dx) at x=(pi)/(4) is given by oo(b)1(c)0(d)(1)/(2)

If (pi)/(2)<=x<=(3 pi)/(2) and y=sin^(-1)(sin x), find (dy)/(dx)

The value of (dy)/(dx) at x=pi/2 , where y is given by y=x^(sinx)+sqrt(x) is equal to.....