Home
Class 12
MATHS
If f(x) is an odd function in R and f(x)...

If `f(x)` is an odd function in `R and f(x)={-x,0 le x le 1 and x^2, x gt 1` then definition of `f(x)` in `(-oo,0)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is an odd function in R and f(x)={-x,0 then definition of f(x) in (-oo,0) is

The function f(x) is defined in 0 le x le1, find the domain of definition of f(x^2)

The function f(x) is defined in 0 le x le1, find the domain of definition of f(2x-1)

f(x) = x^2 +1 ,0 le x le 2 find the range of the function f.

If f(x) = [{:( x^(2) + sin x , 0 le x lt 1) , (x + e^(-x) , x ge 1):} then extend the definition of f(x) for x in (-oo , 0) such that f(x) becomes (a) An even function (b) An odd function

If function f(x) = x-|x-x^(2)|, -1 le x le 1 then f is

If f(x)={(x,"when "0le x le 1),(2x-1,"when "x gt 1):} then -

If f(x)={(x,"when "0le x le 1),(2x-1,"when "x gt 1):} then -

Let f(x)={:{(4, :, x lt-1),(-4x,:,-1 lex le 0):} . If f(x) is an even function in R, then the defination of f(x) " in " (0, +oo) is :