Home
Class 9
MATHS
If p=2-a , prove that a^3+6a p+p^3-8=0...

If `p=2-a ,` prove that `a^3+6a p+p^3-8=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p=2-a, prove that a^3+6ap+p^3-8=0

If p=2-a, prove that a^(3)+6ap+p^(3)-8=0

If p=2-a; prove that a^(3)+6ap+p^(3)-8=0

Prove that if p=2-a, then a^(3)+6ap+p^(3)-8=0

If p=2-a , then a^(3)+6ap+p^(3)-8 =

If a,b,c are in A.P.,prove that - a^3-8b^3+c^3+6abc=0

If the points (8,1),(3,-4),(2,p) are collinear, prove that p+5=0

Consider the G.P. 12,8 ,16/3,…Prove that the 6^(th) term of the G.P is (128)/81

Using the property of determinants prove that {:|( 1,1+p,1+p+q),( 2,3+2p,1+3p+2q),( 3,6+3p,1+6p+3q)|:}=1

If (1-x+x^(2))^(4)=1+P_(1)x+P_(2)x^(2)+P_(3)x^(3)+...+P_(8)x^(8) , then prove that : P_(2)+P_(4)+P_(6)+P_(8)=40 and P_(1)+P_(3)+P_(5)+P_(7)=-40 .