Home
Class 12
MATHS
If f(x)=a+b x+c x^2 and alpha,beta,gamma...

If `f(x)=a+b x+c x^2 and alpha,beta,gamma` are the roots of the equation `x^3=1,t h e n|a b c b c a c a b|` is equal to a.`f(alpha)+f(beta)+f(gamma)` b`f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha)` c. `f(alpha)f(beta)f(gamma)` d. `-f(alpha)f(beta)f(gamma)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=a=b x+c x^2a n dalpha,beta,gamma are the roots of the equation x^3=1,t h e n|a b c b c a c a b| is equal to f(alpha)+f(beta)+f(gamma) f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha) f(alpha)f(beta)f(gamma) -f(alpha)f(beta)f(gamma)

If f(x)=a=b x+c x^2a n dalpha,beta,gamma are the roots of the equation x^3=1,t h e n|a b c b c a c a b| is equal to f(alpha)+f(beta)+f(gamma) f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha) f(alpha)f(beta)f(gamma) -f(alpha)f(beta)f(gamma)

If f(x) = a + bx + cx^(2) and alpha, beta, gamma are roots of the equation x^(3) = 1 , then |(a,b,c),(b,c,a),(c,a,b)| is equal to a) f(alpha) + f(beta) + f(gamma) b) f(alpha)f(beta) + f(beta)f(gamma) + f(gamma)f(alpha) c) f(alpha)f(beta)f(gamma) d) -f(alpha)f(beta)f(gamma)

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the equation x^(3)=1 , then |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the equation x^(3)=1 , then |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If alpha,beta,gamma are the roots of the equation x^(3)+qx+r=0 then find the equation whose roots are ( a )alpha+beta,beta+gamma,gamma+alpha(b)alpha beta,beta gamma,gamma alpha

If alpha, beta, gamma are the zeros of the polynomial f(x) = ax^(3) + bx^(2) + cx + d then 1/(alpha) + 1/(beta) + 1/(gamma) = ………….