Home
Class 12
MATHS
The vertices of a triangle are A(x1, x1t...

The vertices of a triangle are `A(x_1, x_1tantheta_1),B(x_2, x_2tantheta_2)a n dC(x_3, x_3tantheta_3)dot` if the circumcentre of `DeltaABC` coincides with the origin and `H( barx , bary )` is the orthocentre, show that ` bary/( barx )=(sintheta1+sintheta_2+sintheta_3)/(costheta_1+costheta_2+costheta_3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The vertices of a triangle are A(x_1, x_1tantheta_1),B(x_2, x_2tantheta_2)a n dC(x_3, x_3tantheta_3)dot if the circumcentre of "Delta"A B C coincides with the origin and H( x , y ) is the orthocentre, show that y/( x )=(sintheta_1+ sintheta_2+sintheta_3)/(costheta_1+costheta_2+costheta_3)

The vertices of a triangle are : P(x_1,x_1 tan theta_1),Q (x_2, x_2tantheta_2) and R(x_3, x_3tantheta_3) . If the circumcentre of trianglePQR coincides with the origin and H(bar x,bar y) is the orthocentre, show that : bar y/bar x= (sintheta_1+sintheta_2+sintheta_3)/(costheta_1+costheta_2+costheta_3) .

If sintheta_1+sintheta_2+sintheta_3=3, evaluate : costheta_1+costheta_2+costheta_3 .

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then costheta_(1)+costheta_(2)+costheta_(3)=?

If sintheta_1+sintheta_2+sintheta_3=3, then costheta_1+costheta_2+costheta_3 is equal to

If sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3 is equal to

If sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3 is equal to

(1+sintheta)/(1-sintheta)=1+(2tantheta)/costheta+2tan^2theta .

sintheta/(1-cottheta)+costheta/(1-tantheta)=

Prove that (sectheta+tantheta)(1-sintheta)=costheta .