Home
Class 11
MATHS
If A+B+C=pi and cosA=cosBcosC then tanBt...

If `A+B+C=pi` and `cosA=cosBcosC` then `tanBtanC` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to

If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to (i)1 (ii)1/2 (iii)2 (iv)3

If A+B+C=pi and cosA=cosB.cosC show that tanB+tanC=tanA

If A+B=pi/3 , and cosA+cosB=1 , then

If A + B =pi/3 and cosA + cosB = 1 , then :

If A+B+C=pi and cosA=cosB.cosC show that 2cotB.cotC=1

if A+B+C=pi , prove that cosA+cosB + cosC greater than or equal to 1

A and B are positive acute angles satisfying the equations 3cos^(2)A+2cos^(2)B=4 and (3sinA)/(sinB)=(2cosB)/(cosA) , then A+2B is equal to (a) pi/4 (b) pi/3 (c) pi/6 (d) pi/2