Home
Class 12
MATHS
यदि A=[{:(3,-4),(1,-1):}], तो सिद्ध कीजि...

यदि `A=[{:(3,-4),(1,-1):}]`, तो सिद्ध कीजिए कि `A^(n)=[{:(1+2n,-4n),(n,1-2n):}]`, जहाँ n एक धन पूर्णांक है।

Promotional Banner

Similar Questions

Explore conceptually related problems

IF A=[{:(3,-4),(1,-1):}] then show that A^n=[{:(1+2n,-4n),(n,1-2n):}] , for any integer n ge1 .

If A=[(3,-4),(1,-1)] , prove by induction that A_n=[(1+2n,-4n),(n,1-2n)],n in N

If A=[{:(3,-4),(1,-1):}] , then prove that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] where n is any positive integer .

If A=[(3,-4),(1,-1)] , then prove that A^(n)=[(1+2n,-4n),(n,1-2n)] , where n is any positive integer.

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.

Let A=[(-1,-4),(1,3)] , prove by Mathematical Induction that A^(n)=[(1-2n,-4n),(n,1+2n)] , where n in N .

Let A=[(-1,-4),(1,3)] , by Mathematical Induction prove that : A^(n)[(1-2n,-4n),(n,1+2n)] , where n in N .