Home
Class 12
MATHS
Largest integral value satisfying log(x)...

Largest integral value satisfying `log_(x)2 log_(2x)2log_(2)4x > 1` is (A)` 4` (B) `3` (C) `2` (D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

For x>=0, the smallest possible value of the expression,log_(2)(x^(3)-4x^(2)+x+26)-log_(2)(x+2) is ( A ) 1(B) 2(C)5(D) None of these

4.The value of x, satisfying 3^(4log_(9)(x+1))=2^(2log_(2)x)+3

Maximum value of a for which range of function y=log_(2)(x^(2)-4x+a) is R, is : (A) 4 (B) 2 (C) -4 (D) None of these

Find the value of x,log_(4)(x+3)-log_(4)(x-1)=log_(4)8-2

The value of x satisfying log_(3)4 -2 log_(3)sqrt(3x +1) =1 - log_(3)(5x -2)

The value(s) of x, satisfying 3^(4log_9(x+1))=2^(2log_2 x)+3

The number of value of x satisfying 1+log_(5)(x^(2)+1)>=log_(5)(x^(2)+4x+1) is