Home
Class 12
MATHS
" if "sum(e=0)(c^(tan r)-e^(sin x))/((e^...

" if "sum_(e=0)(c^(tan r)-e^(sin x))/((e^(e/2t)-1)(1-cos4x))=p" .Then "(p)/(8)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x to 0)(e^(tanx)-e^(sinx))/((e^(2x)-1)(1-cos4x))

lim_ (x rarr0) (e ^ (tan x) -e ^ (sin x)) / ((e ^ (2x) -1) (1-cos4x)) =

The value of the definite integral (1)/(pi)int_((pi)/(2))^((5 pi)/(2))(e^(tan^(-1)(sin x)))/(e^(tan^(-1)(sin x)+e^(tan^(-1)(cos x)))dx is )

Show that int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)

int_ (0) ^ (2 pi) (e ^ (| sin x |) cos x) / (1 + e ^ (tan x)) dx

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

If int_(0)^(1)(1)/(e^(x)+e^(-x))dx = tan^(-1)p , then : p =

The value of int_(0)^((pi)/(4))(e^((1)/(cos^(2)x))*sin x)/(cos^(3)x)dx equals (A) (e^(2)-e)/(2)(B)(e^(4)-1)/(4)(C)(e^(2)+e)/(4) (D) (e^(4)-1)/(2)

Derivative of (e^(tan^-1x))/(1+e^(tan^-1x))w.r.t.e^(tan-1_x) is