Home
Class 12
MATHS
int(pi)^(2 pi)[2sin x]dx=...

int_(pi)^(2 pi)[2sin x]dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(pi)^(2pi) [ 2 sin x] dx, where [] repreents the greatest integer function, is

Evaluate: int_(-pi/2)^( pi/2)|sin x|dx

Let [a] denote the greatest integer which is less than or equal to a. Then the value of the integral int_(-pi/2)^(pi/2) [ sin x cos x] dx is

If for all real numbers y ,[y] is the greatest integer less than or equal to y , then the value of the integral int_(pi//2)^(3pi//2)[2sin x]dx is

int_(-pi/2)^(pi/2) |sin x| dx

int_(-pi/2)^( pi/2)sin|x||dx is equal to

int_(-pi/2)^( pi/2)sin|x|backslash dx