Home
Class 12
MATHS
" o(b) "tan^(2)(2x-3)...

" o(b) "tan^(2)(2x-3)

Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between the curves y^2=x and x^2=y at (1,\ 1) is tan^(-1)4/3 (b) tan^(-1)3/4 (c) 90o (d) 45o

If A="tan"^(-1)((xsqrt3)/(2K-x)) and B="tan"^(-1)((2x-K)/(Ksqrt3)) , then the value of A-B is

(d) / (dx) [((tan ^ (2) 2x-tan ^ (2) x) / (1-tan ^ (2) 2x tan ^ (2) x)) cot3x] =

If (x)/(y)=(cos A)/(cos B)then(x tan A+y tan B)/(x+y)=cot(A+B)/(2)(b)cot(A-B)/(2)tan(A-B)/(2) (d) tan(A+B)/(2)

A: int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"Tan"^(-1)((1)/(sqrt(5))"tan" (x)/(2))+c R: If a gt b then int (dx)/(a+b cosx)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(sqrt(a-b))/(a+b)"tan"(x)/(2)]+c

If a sin x = b cos x =(2c tan x )/(1- tan^(2) x) " then " ((a^(2)-b^(2))^(2))/(a^2+b^(2))=

If a sin x = b cos x =(2c tan x )/(1- tan^(2) x) " then " ((a^(2)-b^(2))^(2))/(a^2+b^(2))=

Evaluate: (i) int(tan x sec^(2)x)/((a+b tan^(2)x))dx (ii) int sec^(3)x tan xdx

If A=Tan^(-1)((xsqrt(3))/(2k-x)) and B=Tan^(-1)((2x-k)/(ksqrt(3))) then A-B=