Home
Class 12
MATHS
The abscissas of point Pa n dQ on the cu...

The abscissas of point `Pa n dQ` on the curve `y=e^x+e^(-x)` such that tangents at `Pa n dQ` make `60^0` with the x-axis are. `1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2)` `1n((sqrt(3)+sqrt(7))/2)` (c) `1n((sqrt(7)-sqrt(3))/2)` `+-1n((sqrt(3)+sqrt(7))/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tangents at Pa n dQ make 60^0 with the x-axis are. (a)1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2) (b)1n((sqrt(3)+sqrt(7))/2) (c)1n((sqrt(7)-sqrt(3))/2) (d)+-1n((sqrt(3)+sqrt(7))/2)

The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tangents at Pa n dQ make 60^0 with the x-axis are. )a) 1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2) (b) 1n((sqrt(3)+sqrt(7))/2) (c) 1n((sqrt(7)-sqrt(3))/2) (d) +-1n((sqrt(3)+sqrt(7))/2)

The abscissas of point P and Q on the curve y=e^(x)+e^(-x) such that tangents at P and Q make 60^(0) with the x -axis are.ln((sqrt(3)+sqrt(7))/(7)) and 1n((sqrt(3)+sqrt(5))/(2))1n((sqrt(3)+sqrt(7))/(2)) (c) 1n((sqrt(7)-sqrt(3))/(2))+-1n((sqrt(3)+sqrt(7))/(2))

The sum up to n terms of the series 1/(sqrt(1) + sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) +… is:

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

The sum n terms of the series 1/(sqrt(1)+sqrt(3))+1/(sqrt(3)+sqrt(5))+1/(sqrt(5)+sqrt(7))+ is sqrt(2n+1) (b) 1/2sqrt(2n+1) (c) 1/2sqrt(2n+1)-1 (d) 1/2{sqrt(2n+1)-1}

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is