Home
Class 12
MATHS
If y=ae^(2x) +bxe^(2x) where a and b ar...

If `y=ae^(2x) +bxe^(2x)` where a and b are constants the value of the expression `(d^2y)/(dx^2) -4(dy)/(dx)+4y` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(2x)+bxe^(2x) where a and b are constants the value of the expression (d^(2)y)/(dx^(2))-4(dy)/(dx)+4y is.

(dy)/(dx)-(2y)/(x)=y^(4)

Show what y=ae^(-3x)+b, where a and b are arbitary constants, is a solution of the differential equation (d^(2)y)/(dx^(2))+3(dy)/(dx)=0

If y=at^2 , x= 2at where a is a constant what is the value of (d^2y)/(dx^2) at x=1/2 ?

Find the value of the expression y^(3)((d^(2)y)/(dx^(2))) on the ellipse 3x^(2)+4y^(2)=12

Find dy/dx if y=a/x^4-b/x^2+cosx , where a,b are constants.

The differential equation representing the family of curves given by y=ae^(-3x)+b , where a and b are arbitrary constants, is a) (d^(2)y)/(dx^(2))+3(dy)/(dx)-2y=0 b) (d^(2)y)/(dx^(2))-3(dy)/(dx)=0 c) (d^(2)y)/(dx^(2))-3(dy)/(dx)-2y=0 d) (d^(2)y)/(dx^(2))+3(dy)/(dx)=0

Degree of differential equation x(d^2y)/dx^2+y(dy/dx)^4=0 is :

Show that y=ae^(2x)+be^(-x) is a solution of the differential equation (d^(2)y)/(dx^(2))-((dy)/(dx))-2y=0

(x+a)(dy)/(dx)-2y=(x+a)^(4)