Home
Class 12
MATHS
For x in R ,f(x)=|log2-sinx| and g(x)...

For `x in R ,f(x)=|log2-sinx|` and `g(x)=f(f(x))` , then (1)`g` is not differentiable at `x=0` (2) `g'(0)=cos(log2)` (3) `g'(0)=-cos(log2)` (4)g is differentiable at ` x=0` and `g'(0)=-sin(log2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in RR, f(x)=|log2-sinx| and g(x)=f(f(x)) , then

For x in R, f(x) =|log_(e) 2-sinx| and g(x) = f(f(x)) , then

If f(x)=e^(sin(log cos x)) and g(x)=log cos x then what is the derivative of f(x)g(x)?

Let f(x)=sinx,g(x)=x^2 and h(x) = log x. If F(x)=(h(f(g(x)))) , then F'(x) is:

Find f0g and g0f : f(x) = 2x , g(x)=sinx

If f(x)=e^(sin(log cos x)) and g(x)=log cos x , then what is the derivative of f(x) with respect to g(x) ?

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is