Home
Class 12
MATHS
समीकरण "tan"^(-1)(1/(2x+1))+"tan"^(-1)(1...

समीकरण `"tan"^(-1)(1/(2x+1))+"tan"^(-1)(1/(4x+1))="tan"^(-1)(2/(x^(2)))` को संतुष्ट करने वाले धनात्मक हलों की संख्या क्या होगी?

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

Solve: "tan"^(-1) 1/(2x+1) +"tan"^(-1) 1/(4x+1) = "tan"^(-1) 2/x^2

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

If "Tan"^(-1)1/(1+2x)+"Tan"^(-1)1/(4x+1)" = Tan"^(-1)2/(x^(2)) then x(x!=0)=

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)