Home
Class 12
MATHS
If sin^-1x+sin^-1y+sin^-1z=pi prove that...

If `sin^-1x+sin^-1y+sin^-1z=pi` prove that (1)`xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^-1 x +sin^-1 y + sin ^-1 z=pi , prove that xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz

if, sin^-1x + sin^-1y + sin^-1z =pi then prove that xsqrt(1-x^2) + ysqrt(1-y^2) + zsqrt(1-z^2) =2xyz.

If sin^(-1)x+sin^(-1)y+sin^(-1)z = pi then prove that xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)= 2xyz .

Prove the followings : If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xyz .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1) x +sin^(-1) y + sin^(-1) z =pi , "show that" x sqrt(1-x^2)+y sqrt(1-y^2) +zsqrt(1-z^2)=2 xyz

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz