Home
Class 10
MATHS
x-y=13=root(4)(x)+sqrt(y)...

x-y=13=root(4)(x)+sqrt(y)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x= root(6)(27)- sqrt(6 3/4) and y= (sqrt 45+ sqrt 605+ sqrt 245)/(sqrt 80+sqrt 125) , then the value of x^2+y^2 is: मान लीजिये कि x= root(6)(27)- sqrt(6 3/4) और y= (sqrt 45+ sqrt 605+ sqrt 245)/(sqrt 80+sqrt 125) है, तो x^2+y^2 का मान ज्ञात करें |

If 0

sqrt(x^(-2)y^(3)) root(4)(root(3)(x^(2)))

The general solution of (x)/(y)(dy)/(dx)=root(4)((y)/(x)) is

If sqrt(sqrt(sqrt(x)))=root(4)(root(4)(root(4)(sqrt(x^(4)+4)))), then the value of x^(4) is

Solve for x and y : 2/sqrt(x) + 3/sqrt(y) = 2 4/sqrt(x) + 9/sqrt(y) = -1

The value of f(x,y)=((4sqrt(x^(3)y)-4sqrt(x^(3)))/(sqrt(y)-sqrt(x))+(1+sqrt(xy))/(4sqrt(xy)))^(-2)(1+2sqrt((y)/(x))+(y)/(x))^((1)/(2)) when x=9,y=0.04